
Chapter 8

Scapegoat Trees

In this chapter, we study a binary search tree data structure, the Scape-
goatTree. This structure is based on the common wisdom that, when
something goes wrong, the first thing people tend to do is find someone
to blame (the scapegoat). Once blame is firmly established, we can leave
the scapegoat to fix the problem.

A ScapegoatTree keeps itself balanced by partial rebuilding opera-
tions. During a partial rebuilding operation, an entire subtree is decon-
structed and rebuilt into a perfectly balanced subtree. There are many
ways of rebuilding a subtree rooted at node u into a perfectly balanced
tree. One of the simplest is to traverse u’s subtree, gathering all its nodes
into an array, a, and then to recursively build a balanced subtree using
a. If we let m = a.length/2, then the element a[m] becomes the root of the
new subtree, a[0], . . . ,a[m−1] get stored recursively in the left subtree and
a[m+ 1], . . . ,a[a.length− 1] get stored recursively in the right subtree.

ScapegoatTree
void rebuild(Node<T> u) {

int ns = size(u);
Node<T> p = u.parent;
Node<T>[] a = Array.newInstance(Node.class, ns);
packIntoArray(u, a, 0);
if (p == nil) {

r = buildBalanced(a, 0, ns);
r.parent = nil;

} else if (p.right == u) {
p.right = buildBalanced(a, 0, ns);

173



§8.1 Scapegoat Trees

p.right.parent = p;
} else {

p.left = buildBalanced(a, 0, ns);
p.left.parent = p;

}
}
int packIntoArray(Node<T> u, Node<T>[] a, int i) {

if (u == nil) {
return i;

}
i = packIntoArray(u.left, a, i);
a[i++] = u;
return packIntoArray(u.right, a, i);

}
Node<T> buildBalanced(Node<T>[] a, int i, int ns) {

if (ns == 0)
return nil;

int m = ns / 2;
a[i + m].left = buildBalanced(a, i, m);
if (a[i + m].left != nil)

a[i + m].left.parent = a[i + m];
a[i + m].right = buildBalanced(a, i + m + 1, ns - m - 1);
if (a[i + m].right != nil)

a[i + m].right.parent = a[i + m];
return a[i + m];

}

A call to rebuild(u) takes O(size(u)) time. The resulting subtree has
minimum height; there is no tree of smaller height that has size(u) nodes.

8.1 ScapegoatTree: A Binary Search Tree with Partial
Rebuilding

A ScapegoatTree is a BinarySearchTree that, in addition to keeping
track of the number, n, of nodes in the tree also keeps a counter, q, that
maintains an upper-bound on the number of nodes.

ScapegoatTree
int q;

174



ScapegoatTree: A Binary Search Tree with Partial Rebuilding §8.1

0

1

2

3

4

5

6

7

8

9

Figure 8.1: A ScapegoatTree with 10 nodes and height 5.

At all times, n and q obey the following inequalities:

q/2 ≤ n ≤ q .

In addition, a ScapegoatTree has logarithmic height; at all times, the
height of the scapegoat tree does not exceed:

log3/2 q ≤ log3/2 2n < log3/2 n+ 2 . (8.1)

Even with this constraint, a ScapegoatTree can look surprisingly unbal-
anced. The tree in Figure 8.1 has q = n = 10 and height 5 < log3/2 10 ≈
5.679.

Implementing the find(x) operation in a ScapegoatTree is done us-
ing the standard algorithm for searching in a BinarySearchTree (see Sec-
tion 6.2). This takes time proportional to the height of the tree which, by
(8.1) is O(logn).

To implement the add(x) operation, we first increment n and q and
then use the usual algorithm for adding x to a binary search tree; we
search for x and then add a new leaf u with u.x = x. At this point, we may
get lucky and the depth of u might not exceed log3/2 q. If so, then we leave
well enough alone and don’t do anything else.

Unfortunately, it will sometimes happen that depth(u) > log3/2 q. In
this case, we need to reduce the height. This isn’t a big job; there is only

175



§8.1 Scapegoat Trees

one node, namely u, whose depth exceeds log3/2 q. To fix u, we walk from
u back up to the root looking for a scapegoat, w. The scapegoat, w, is a very
unbalanced node. It has the property that

size(w.child)
size(w)

>
2
3
, (8.2)

where w.child is the child of w on the path from the root to u. We’ll very
shortly prove that a scapegoat exists. For now, we can take it for granted.
Once we’ve found the scapegoat w, we completely destroy the subtree
rooted at w and rebuild it into a perfectly balanced binary search tree. We
know, from (8.2), that, even before the addition of u, w’s subtree was not a
complete binary tree. Therefore, when we rebuild w, the height decreases
by at least 1 so that height of the ScapegoatTree is once again at most
log3/2 q.

ScapegoatTree
boolean add(T x) {

// first do basic insertion keeping track of depth
Node<T> u = newNode(x);
int d = addWithDepth(u);
if (d > log32(q)) {

// depth exceeded, find scapegoat
Node<T> w = u.parent;
while (3*size(w) <= 2*size(w.parent))
w = w.parent;

rebuild(w.parent);
}
return d >= 0;

}

If we ignore the cost of finding the scapegoat w and rebuilding the
subtree rooted at w, then the running time of add(x) is dominated by the
initial search, which takes O(logq) = O(logn) time. We will account for
the cost of finding the scapegoat and rebuilding using amortized analysis
in the next section.

The implementation of remove(x) in a ScapegoatTree is very simple.
We search for x and remove it using the usual algorithm for removing a
node from a BinarySearchTree. (Note that this can never increase the

176



ScapegoatTree: A Binary Search Tree with Partial Rebuilding §8.1

0

1

2

3

4

5

6

7

8

9

3.5

1
2

2
3

3
6

6
7 > 2

3

6

7

8

9

0

1

2

3

4

53.5

Figure 8.2: Inserting 3.5 into a ScapegoatTree increases its height to 6, which vio-
lates (8.1) since 6 > log3/2 11 ≈ 5.914. A scapegoat is found at the node containing
5.

height of the tree.) Next, we decrement n, but leave q unchanged. Finally,
we check if q > 2n and, if so, then we rebuild the entire tree into a perfectly
balanced binary search tree and set q = n.

ScapegoatTree
boolean remove(T x) {

if (super.remove(x)) {
if (2*n < q) {
rebuild(r);
q = n;

}
return true;

}
return false;

}

Again, if we ignore the cost of rebuilding, the running time of the
remove(x) operation is proportional to the height of the tree, and is there-
fore O(logn).

177



§8.1 Scapegoat Trees

8.1.1 Analysis of Correctness and Running-Time

In this section, we analyze the correctness and amortized running time of
operations on a ScapegoatTree. We first prove the correctness by show-
ing that, when the add(x) operation results in a node that violates Condi-
tion (8.1), then we can always find a scapegoat:

Lemma 8.1. Let u be a node of depth h > log3/2 q in a ScapegoatTree. Then
there exists a node w on the path from u to the root such that

size(w)
size(parent(w))

> 2/3 .

Proof. Suppose, for the sake of contradiction, that this is not the case, and

size(w)
size(parent(w))

≤ 2/3 .

for all nodes w on the path from u to the root. Denote the path from the
root to u as r = u0, . . . ,uh = u. Then, we have size(u0) = n, size(u1) ≤ 2

3n,
size(u2) ≤ 4

9n and, more generally,

size(ui) ≤
(2

3

)i
n .

But this gives a contradiction, since size(u) ≥ 1, hence

1 ≤ size(u) ≤
(2

3

)h
n <

(2
3

)log3/2 q
n ≤

(2
3

)log3/2 n
n =

(1
n

)
n = 1 .

Next, we analyze the parts of the running time that are not yet ac-
counted for. There are two parts: The cost of calls to size(u) when search-
ing for scapegoat nodes, and the cost of calls to rebuild(w) when we find
a scapegoat w. The cost of calls to size(u) can be related to the cost of
calls to rebuild(w), as follows:

Lemma 8.2. During a call to add(x) in a ScapegoatTree, the cost of finding
the scapegoat w and rebuilding the subtree rooted at w is O(size(w)).

Proof. The cost of rebuilding the scapegoat node w, once we find it, is
O(size(w)). When searching for the scapegoat node, we call size(u) on a

178



ScapegoatTree: A Binary Search Tree with Partial Rebuilding §8.1

sequence of nodes u0, . . . ,uk until we find the scapegoat uk = w. However,
since uk is the first node in this sequence that is a scapegoat, we know that

size(ui) <
2
3
size(ui+1)

for all i ∈ {0, . . . , k − 2}. Therefore, the cost of all calls to size(u) is

O



k∑

i=0

size(uk−i)


 = O


size(uk) +

k−1∑

i=0

size(uk−i−1)




= O


size(uk) +

k−1∑

i=0

(2
3

)i
size(uk)




= O


size(uk)


1 +

k−1∑

i=0

(2
3

)i




= O(size(uk)) =O(size(w)) ,

where the last line follows from the fact that the sum is a geometrically
decreasing series.

All that remains is to prove an upper-bound on the cost of all calls to
rebuild(u) during a sequence of m operations:

Lemma 8.3. Starting with an empty ScapegoatTree any sequence of m
add(x) and remove(x) operations causes at most O(m logm) time to be used
by rebuild(u) operations.

Proof. To prove this, we will use a credit scheme. We imagine that each
node stores a number of credits. Each credit can pay for some constant, c,
units of time spent rebuilding. The scheme gives out a total of O(m logm)
credits and every call to rebuild(u) is paid for with credits stored at u.

During an insertion or deletion, we give one credit to each node on
the path to the inserted node, or deleted node, u. In this way we hand
out at most log3/2 q ≤ log3/2m credits per operation. During a deletion we
also store an additional credit “on the side.” Thus, in total we give out at
most O(m logm) credits. All that remains is to show that these credits are
sufficient to pay for all calls to rebuild(u).

179



§8.1 Scapegoat Trees

If we call rebuild(u) during an insertion, it is because u is a scapegoat.
Suppose, without loss of generality, that

size(u.left)
size(u)

>
2
3
.

Using the fact that

size(u) = 1 + size(u.left) + size(u.right)

we deduce that
1
2
size(u.left) > size(u.right)

and therefore

size(u.left)− size(u.right) >
1
2
size(u.left) >

1
3
size(u) .

Now, the last time a subtree containing u was rebuilt (or when u was
inserted, if a subtree containing u was never rebuilt), we had

size(u.left)− size(u.right) ≤ 1 .

Therefore, the number of add(x) or remove(x) operations that have af-
fected u.left or u.right since then is at least

1
3
size(u)− 1 .

and there are therefore at least this many credits stored at u that are avail-
able to pay for the O(size(u)) time it takes to call rebuild(u).

If we call rebuild(u) during a deletion, it is because q > 2n. In this
case, we have q − n > n credits stored “on the side,” and we use these
to pay for the O(n) time it takes to rebuild the root. This completes the
proof.

8.1.2 Summary

The following theorem summarizes the performance of the Scapegoat-
Tree data structure:

180



Discussion and Exercises §8.2

Theorem 8.1. A ScapegoatTree implements the SSet interface. Ignoring
the cost of rebuild(u) operations, a ScapegoatTree supports the operations
add(x), remove(x), and find(x) in O(logn) time per operation.

Furthermore, beginning with an empty ScapegoatTree, any sequence of
m add(x) and remove(x) operations results in a total ofO(m logm) time spent
during all calls to rebuild(u).

8.2 Discussion and Exercises

The term scapegoat tree is due to Galperin and Rivest [33], who define and
analyze these trees. However, the same structure was discovered earlier
by Andersson [5, 7], who called them general balanced trees since they can
have any shape as long as their height is small.

Experimenting with the ScapegoatTree implementation will reveal
that it is often considerably slower than the other SSet implementations
in this book. This may be somewhat surprising, since height bound of

log3/2 q ≈ 1.709logn+O(1)

is better than the expected length of a search path in a Skiplist and not
too far from that of a Treap. The implementation could be optimized by
storing the sizes of subtrees explicitly at each node or by reusing already
computed subtree sizes (Exercises 8.5 and 8.6). Even with these optimiza-
tions, there will always be sequences of add(x) and delete(x) operation
for which a ScapegoatTree takes longer than other SSet implementa-
tions.

This gap in performance is due to the fact that, unlike the other SSet
implementations discussed in this book, a ScapegoatTree can spend a lot
of time restructuring itself. Exercise 8.3 asks you to prove that there are
sequences of n operations in which a ScapegoatTree will spend on the or-
der of n logn time in calls to rebuild(u). This is in contrast to other SSet
implementations discussed in this book, which only makeO(n) structural
changes during a sequence of n operations. This is, unfortunately, a nec-
essary consequence of the fact that a ScapegoatTree does all its restruc-
turing by calls to rebuild(u) [20].

Despite their lack of performance, there are applications in which a

181



§8.2 Scapegoat Trees

ScapegoatTree could be the right choice. This would occur any time
there is additional data associated with nodes that cannot be updated
in constant time when a rotation is performed, but that can be updated
during a rebuild(u) operation. In such cases, the ScapegoatTree and
related structures based on partial rebuilding may work. An example of
such an application is outlined in Exercise 8.11.

Exercise 8.1. Illustrate the addition of the values 1.5 and then 1.6 on the
ScapegoatTree in Figure 8.1.

Exercise 8.2. Illustrate what happens when the sequence 1,5,2,4,3 is
added to an empty ScapegoatTree, and show where the credits described
in the proof of Lemma 8.3 go, and how they are used during this sequence
of additions.

Exercise 8.3. Show that, if we start with an empty ScapegoatTree and
call add(x) for x = 1,2,3, . . . ,n, then the total time spent during calls to
rebuild(u) is at least cn logn for some constant c > 0.

Exercise 8.4. The ScapegoatTree, as described in this chapter, guaran-
tees that the length of the search path does not exceed log3/2 q.

1. Design, analyze, and implement a modified version of Scapegoat-
Tree where the length of the search path does not exceed logb q,
where b is a parameter with 1 < b < 2.

2. What does your analysis and/or your experiments say about the
amortized cost of find(x), add(x) and remove(x) as a function of
n and b?

Exercise 8.5. Modify the add(x) method of the ScapegoatTree so that it
does not waste any time recomputing the sizes of subtrees that have al-
ready been computed. This is possible because, by the time the method
wants to compute size(w), it has already computed one of size(w.left)
or size(w.right). Compare the performance of your modified implemen-
tation with the implementation given here.

Exercise 8.6. Implement a second version of the ScapegoatTree data
structure that explicitly stores and maintains the sizes of the subtree

182



Discussion and Exercises §8.2

rooted at each node. Compare the performance of the resulting imple-
mentation with that of the original ScapegoatTree implementation as
well as the implementation from Exercise 8.5.

Exercise 8.7. Reimplement the rebuild(u) method discussed at the be-
ginning of this chapter so that it does not require the use of an array to
store the nodes of the subtree being rebuilt. Instead, it should use re-
cursion to first connect the nodes into a linked list and then convert this
linked list into a perfectly balanced binary tree. (There are very elegant
recursive implementations of both steps.)

Exercise 8.8. Analyze and implement a WeightBalancedTree. This is a
tree in which each node u, except the root, maintains the balance invariant
that size(u) ≤ (2/3)size(u.parent). The add(x) and remove(x) operations
are identical to the standard BinarySearchTree operations, except that
any time the balance invariant is violated at a node u, the subtree rooted
at u.parent is rebuilt. Your analysis should show that operations on a
WeightBalancedTree run in O(logn) amortized time.

Exercise 8.9. Analyze and implement a CountdownTree. In a Countdown-
Tree each node u keeps a timer u.t. The add(x) and remove(x) opera-
tions are exactly the same as in a standard BinarySearchTree except that,
whenever one of these operations affects u’s subtree, u.t is decremented.
When u.t = 0 the entire subtree rooted at u is rebuilt into a perfectly
balanced binary search tree. When a node u is involved in a rebuilding
operation (either because u is rebuilt or one of u’s ancestors is rebuilt) u.t
is reset to size(u)/3.

Your analysis should show that operations on a CountdownTree run in
O(logn) amortized time. (Hint: First show that each node u satisfies some
version of a balance invariant.)

Exercise 8.10. Analyze and implement a DynamiteTree. In a Dynamite-
Tree each node u keeps tracks of the size of the subtree rooted at u in
a variable u.size. The add(x) and remove(x) operations are exactly the
same as in a standard BinarySearchTree except that, whenever one of
these operations affects a node u’s subtree, u explodes with probability
1/u.size. When u explodes, its entire subtree is rebuilt into a perfectly
balanced binary search tree.

183



§8.2 Scapegoat Trees

Your analysis should show that operations on a DynamiteTree run in
O(logn) expected time.

Exercise 8.11. Design and implement a Sequence data structure that
maintains a sequence (list) of elements. It supports these operations:

• addAfter(e): Add a new element after the element e in the se-
quence. Return the newly added element. (If e is null, the new
element is added at the beginning of the sequence.)

• remove(e): Remove e from the sequence.

• testBefore(e1,e2): return true if and only if e1 comes before e2
in the sequence.

The first two operations should run in O(logn) amortized time. The third
operation should run in constant time.

The Sequence data structure can be implemented by storing the ele-
ments in something like a ScapegoatTree, in the same order that they oc-
cur in the sequence. To implement testBefore(e1,e2) in constant time,
each element e is labelled with an integer that encodes the path from the
root to e. In this way, testBefore(e1,e2) can be implemented by com-
paring the labels of e1 and e2.

184


